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Abstract

A novel method has been developed for calculating
gradients of aerodynamic force and moment coeffi-
cients for an aeroelastic aircraft model. This method
uses the Global Sensitivity Equations (GSE) to ac-
count for the aero-structural coupling, and a reduced-
order modal analysis approach to condense the cou-
pling bandwidth between the aerodynamic and struc-
tural models. Parallel computing is applied to reduce
the computational expense of the numerous high fi-
delity aerodynamic analyses needed for the coupled
aero-structural system. Good agreement is obtained
between aerodynamic force and moment gradients
computed with the GSE/modal analysis approach
and the same quantities computed using brute-force,
computationally expensive, finite difference approxi-
mations. A comparison between the computational
expense of the GSE/modal analysis method and a
pure finite difference approach is presented. These
results show that the GSE/modal analysis approach
is the more computationally efficient technique if sen-
sitivity analysis is to be performed for two or more
aircraft design parameters.

Nomenclature

CD drag coefficient
CL lift coefficient
CMo pitching moment coefficient (about y-axis)
CFD computational fluid dynamics
CSM computational structural mechanics
E Young’s modulus
F vector of aerodynamic loads
GSE Global Sensitivity Equations
I area moment of inertia
I identity matrix
K finite element stiffness matrix
L beam length
LE leading edge
LSM Local Sensitivity Matrix
LSV Local Sensitivity Vector

M finite element mass matrix
MDO multidisciplinary design optimization
OML outer mold line
q vector of mode shape scale factors
TSV Total Sensitivity Vector
t/c thickness-to-chord ratio
X vector of independent design parameters
α angle-of-attack
δ beam tip deflection
∆ vector of structural deflections
λ eigenvalue from modal analysis
Λ diagonal matrix of eigenvalues
ΛLE inboard leading edge sweep angle
φ eigenvector from modal analysis
Φ column matrix of eigenvectors

1 Introduction

In Paul Rubbert’s 1994 AIAA Wright Brother Lec-
ture [1] he states a vision for the future of the aircraft
design process as follows,

“My vision is to be able to carry out the
detailed aerodynamic design of any por-
tion of an airplane within a handful of
days at most, and to do it in concert
with the loads engineer, the structural de-
signer, the systems person and the manu-
facturing expert sitting side by side in the
same room, with computer systems that
talk well with one another.”

Implicit in this statement is that the computational
models used in aircraft design accurately capture the
important physical phenomena of interest. That is,
high fidelity analysis models are available for aerody-
namic analysis, structural analysis, and for the other
aircraft design disciplines. Rubbert’s vision that
the computer systems “talk well with one another”
supposes that a capability exists to exchange the
discipline-specific high fidelity analysis data among
the different engineering disciplines. The commu-
nication links among the engineering disciplines are
necessary to perform the sensitivity analyses needed
to quantify the impact of design perturbations (e.g.,
changes in wing thickness) on the performance of the
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aircraft (e.g., aerodynamic performance, structural
weight, manufacturing costs). Such sensitivity stud-
ies are the foundation for improving, or optimizing,
an aircraft design.

Progress toward Rubbert’s vision is occurring
gradually as high fidelity analysis tools, such as
Euler/Navier-Stokes computational fluid dynamics
(CFD) solvers and finite element computational
structural mechanics (CSM) codes, are employed in-
creasingly early in the aircraft design process. How-
ever, there are several impediments to Rubbert’s vi-
sion of efficient and accurate computing in aircraft
design. One of these impediments is the compu-
tational burden incurred when expensive CFD and
CSM codes are employed in the analysis of coupled
aero-structural systems such as modern transport
and fighter aircraft. Analyzing these coupled systems
typically requires the repeated use of CFD and CSM
codes to obtain an accurate solution. Thus, the com-
putational expense quickly mounts if many coupled
aero-structural analyses must be performed for sen-
sitivity analysis and/or optimization.

The focus of this work is the development of a
computational method that permits the rapid evalu-
ation of sensitivity derivatives (gradients) for a cou-
pled aero-structural system. This study employs the
Global Sensitivity Equation (GSE) method devel-
oped by Sobieski [2] which provides a mathemati-
cal expression for the total sensitivity derivatives of
a general coupled system. For the aero-structural
system considered here, the GSE method requires
the computation of interdisciplinary coupling terms
(partial derivatives) between the aerodynamic and
structural models. To reduce the number of partial
derivatives terms in the GSE, structural deflections
are approximated using a superposition of structural
mode shapes (basis vectors). Additional computa-
tional savings are realized by using coarse grained
parallel computing for the CFD evaluations needed to
compute some of the partial derivatives in the GSE.

The combined GSE/modal analysis approach de-
veloped in this study enables an aircraft design en-
gineer to perform a sensitivity analysis of a coupled
aero-structural system in a manner that is more ef-
ficient than using traditional finite difference meth-
ods. In addition, the GSE/modal analysis approach
employs the CFD and CSM solvers as black-boxes.
Thus, virtually any CFD or CSM code may be used
with this sensitivity analysis method.

The GSE/modal analysis approach is intended for
use in the preliminary phase of aircraft design when
both detailed CFD and CSM (finite element) models
have been created for an aircraft. The use of a lin-
ear superposition of mode shapes to represent struc-

tural deflections of a finite element model limits the
GSE/modal analysis approach to the exploration of
perturbations of an existing aircraft design. That is,
one assumption of the GSE/modal analysis method is
that the natural frequencies and mode shapes remain
essentially unchanged for small perturbations in the
aircraft design parameters. For this reason, this ap-
proach is not intended for use in the conceptual phase
of aircraft design when major configuration choices
have yet to be finalized.

In this study, the Langley-developed CFD solver
CFL3D [3] is used for aerodynamic analysis and the
commercial CSM solver GENESIS [4] is used for
structural analysis. The aircraft examined here is
a generic supersonic transport configuration. The
parametric model for this aircraft contains 104 design
variables (64 planform and airfoil variables, 40 struc-
tural variables). Gradients of aerodynamic force and
moment coefficients are computed for three of these
variables using the GSE/modal analysis approach.
Validation of the accuracy of the GSE/modal anal-
ysis gradients is performed through comparisons to
gradients computed using a pure finite difference ap-
proach.

The remainder of this paper is arranged as fol-
lows. Section 2 contains some background infor-
mation on related research using GSE methods and
reduced-order modal analysis methods in computa-
tional aeroelasticity. Section 3 covers the mathemat-
ics of the GSE formulation and the modal analy-
sis methods employed in this study. Section 4 con-
tains a simple problem involving a cantilever beam to
demonstrate the GSE/modal analysis method. Sec-
tions 5 and 6 cover the modeling and aeroelastic anal-
ysis of a supersonic transport aircraft, along with re-
sults obtained from applying the GSE/modal analy-
sis method to calculate sensitivities for this aircraft
model. In Section 7 there is a comparison of the com-
putational expense of the GSE/modal analysis ap-
proach and the traditional finite difference approach
for calculating sensitivity derivatives. A summary of
this work is contained in Section 8.

2 Background

This study builds on the past research efforts of
Barthelemy et al [5] and Dovi et al [6] who em-
ployed the Global Sensitivity Equations in design op-
timization of a supersonic transport aircraft. Re-
lated research by Kapania et al [7] and Eldred et
al [8] used a variation of the GSE method for the
sensitivity analysis of a simple forward-swept wing
model. These studies employed inexpensive low fi-
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delity analysis methods such as linear aerodynamics
(panel codes) and equivalent plate structural models
(ELAPS [9, 10]). These inexpensive methods per-
mitted the use of finite difference approximations to
evaluate the interdisciplinary coupling derivatives in
the GSE (described in Section 3).

The use of computationally expensive high fidelity
analysis software in this study greatly increases the
amount of interdisciplinary coupling derivatives in
the GSE. That is, the number of coupling terms is
related to the amount of force and deflection data
exchanged between the aerodynamic and structural
models. With the high fidelity CFD and CSM tools
employed in this work, the number of coupling terms
in the GSE is O(102−103). Thus, a pure finite differ-
ence approach for approximating the partial deriva-
tive coupling terms is not computationally affordable.

Fortunately, there has been considerable research
in the aeroelasticity community in developing meth-
ods that simplify the coupling between aerodynamic
and structural models. Numerous reduced-order
modeling approaches are described in the survey pa-
pers by Friedmann [11], Livne [12], and Karpel [13].
Recent examples of the application of reduced-order
modeling methods are found in the work of Raveh
and Karpel [14] and Cohen and Kapania [15].

The reduced-order modeling approach followed in
this study employs a linear superposition of basis vec-
tors to approximate the structural deflections of an
aircraft finite element model. Here, the basis vectors
are supplied by a normal modes (eigenvalue) analysis
of the finite element model. The number of basis vec-
tors used in this study is O(101). One advantage of
this reduced-order approach is that it supplies ana-
lytic expressions for some of the interdisciplinary cou-
pling terms in the GSE. Another advantage of this ap-
proach is that it becomes computationally affordable
to compute the remaining partial derivatives in the
GSE using finite difference methods. The derivation
and application of this GSE/modal analysis approach
is described below.

3 Sensitivity Analysis

3.1 Global Sensitivity Equations

Consider a generic coupled aero-structural system de-
picted in Figure 1. The coupling between the aero-
dynamic and structural models is accomplished by
calculating external loads, F, on the aircraft struc-
ture along with the resulting structural deflections,
∆. The aerodynamic and structural data needed
to compute F and ∆ are obtained from a variety
of computer programs along with suitable pre- and

post-processing software to transfer the load and de-
flection data between the models.

The input into the aero-structural system is a vec-
tor of independent parameters X. This vector con-
tains aerodynamic design parameters, such as wing
planform and shape parameters, as well as struc-
tural design parameters, such as internal rib and spar
thicknesses. The output quantities from the coupled
system include the aerodynamic load distribution on
the deflected structure, F, along with the force and
moment coefficients CL, CD, and CMo . In addition,
the output includes the final structural deflections,
∆, and the internal stresses in the structure.

For an aircraft design application, quantities of
interest such as the aerodynamic force and moment
coefficients are needed to ensure that the aircraft will
satisfy the specified mission requirements. In addi-
tion, the gradients of these quantities are needed to
determine the sensitivity of the aerodynamic perfor-
mance to small perturbations in the design parame-
ters. Analytic expressions for these gradients usually
are not available and they are estimated using finite
difference approximations. This requires a separate
solution of the coupled system for each perturbation
of X; a potentially prohibitive undertaking if either
the aerodynamic model or the structural model is
computationally expensive to evaluate.

Following the notation employed by Sobieski
[2], the loads and deflection transfer in the aero-
structural system are represented in functional form
as

F = F(X,∆), (1)

and
∆ = ∆(X,F). (2)

Differentiating Equations 1 and 2 with respect to the
vector of independent parameters, X, yields

dF
dX

=
∂F
∂X

+
∂F
∂∆

d∆
dX

, (3)

and
d∆
dX

=
∂∆
∂X

+
∂∆
∂F

dF
dX

. (4)

Equations 3 and 4 are coupled and may be rearranged
into a linear system of the form I − ∂F

∂∆

−∂∆
∂F

I




dF
dX
d∆
dX

 =


∂F
∂X
∂∆
∂X

 . (5)

Equation 5 is known as the Global Sensitivity
Equation (GSE), which provides a convenient frame-
work for grouping related terms in a system of cou-
pled sensitivity equations. Olds [16] provides a use-
ful lexicon for describing the components of the GSE.
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Following Olds’ approach, the matrix on the left side
of Equation 5 is termed the Local Sensitivity Matrix
(LSM) and it contains the partial derivatives of the
aerodynamic loads and structural deflections with re-
spect to each other. Note that the vector of indepen-
dent parameters, X, does not appear in the LSM. The
vector on the right side of Equation 5 is termed the
Local Sensitivity Vector (LSV). This vector contains
the partial derivatives of the loads and deflections
with respect to the independent parameters. In the
LSV there are no coupling derivatives. The vector on
the left side of Equation 5 is termed the Total Sen-
sitivity Vector (TSV) and it contains the total sen-
sitivity derivatives which are the unknown quantities
in this system of equations.

While Equation 5 provides a simple expression for
the interdisciplinary coupling of an aero-structural
system, the partial derivative terms in Equation 5
may be particularly difficult to obtain. For example,
consider the term ∂F/∂∆ in Equation 5. The vec-
tor of aerodynamic forces applied to the structural
model, F, is computed using an expensive CFD code
(assume for this example that suitable force calcula-
tion and interpolation methods are available). If one
attempts to calculate ∂F/∂∆ using a finite differ-
ence approximation, then a CFD code evaluation is
required for each perturbation of the vector ∆. Even
with parallel computing, this approach is not attrac-
tive when the length of ∆ is large, e.g., O(102−103),
as would be typical for a finite element model used in
the aircraft industry.

For this reason there is motivation to explore
methods that may reduce the computational expense
of computing the term ∂F/∂∆. One approach to this
problem is to represent the nodal deflections using a
linear superposition of a set of basis functions. A
version of such a reduced basis approach is employed
in this study, where the the basis functions are the
mode shapes of the structural finite element model.

An important aspect of this work is that the
reduced basis method used here is employed while
treating the CFD and CSM codes as black boxes.
That is, access to the source code of the CFD and
CSM analysis software is not needed. While this ap-
proach may appear restrictive, it is a realistic model
of the aircraft design industry in which both com-
mercial software and legacy software are used in the
aircraft analysis and design process. An attractive
outcome of this restriction is that successful meth-
ods developed by treating the CFD and CSM codes
as black boxes will be broadly applicable to aircraft
design practices in industry.

3.2 Modal Analysis

In linear finite element structural analysis the vector
of structural displacements, ∆, is found by solving
the equation

F = K∆, (6)

where F is the vector of applied loads and K is the
stiffness matrix assembled from the individual shape
functions of the finite elements. Another common
computation is a modal analysis of the finite element
model. This analysis provides the natural frequen-
cies of the structure along with the associated mode
shapes. The modal analysis is performed by solving
the eigenvalue problem

Kφ = Mφλ, (7)

where M is the mass matrix of the finite element
model, and φ is an eigenvector (mode shape) corre-
sponding to a particular eigenvalue, λ, that satisfies
the linear system.

Equation 7 is solved to obtain the desired number
of eigenvalues and eigenvectors for the finite element
model. These n eigenvalues are expressed using a
diagonal matrix of the form

Λ = [λ1, λ2, . . . , λn]I, (8)

where I is an n× n identity matrix. The n eigenvec-
tors are grouped using the matrix Φ as

Φ = [φ1 φ2 . . . φn], (9)

where the n columns of Φ correspond to the n eigen-
values in Λ. Note that in this study the eigenvec-
tors are scaled to meet the K-orthogonality and M-
orthonormality conditions described by Bathe [17],
such that

ΦTKΦ = Λ, (10)

and
ΦTMΦ = I. (11)

This scaling is performed internally in the CSM solver
GENESIS [4] used in this study.

The mode shapes in Φ are used to approximate
the structural deflections, ∆, where

∆ = Φq, (12)

and q is a vector of unknown scale factors. The vector
q is computed using a least squares approach where

q = (ΦTΦ)−1ΦT∆. (13)

Note that it is typical to use 10 – 30 mode shapes
in this approximation. Thus, the length of q can be
much smaller than the length of the vector of struc-
tural deflections ∆.
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To take advantage of this reduced basis approach
involving q, the Chain Rule is applied to the term
∂F/∂∆ as follows

∂F
∂∆

=
∂F
∂q

∂q
∂∆

, (14)

where, from Equation 13

∂q
∂∆

= (ΦTΦ)−1ΦT. (15)

Thus, Equation 14 becomes

∂F
∂∆

=
∂F
∂q

(ΦTΦ)−1ΦT. (16)

The advantage of this approach is that q is O(101)
whereas ∆ typically is O(102−103). It is much more
reasonable to compute ∂F/∂q than ∂F/∂∆ if using
finite difference approximations.

The other partial derivative term in the Local Sen-
sitivity Matrix of Equation 5 is ∂∆/∂F. The exact
value of this derivative is K−1, however, this matrix
is not available to the user in many finite element
analysis codes, particularly those that are commer-
cially developed. For this reason, an approximation
for ∂∆/∂F is needed. Using the modal analysis ap-
proach described above, it is possible to compose an
explicit expression relating ∆ and F. This is de-
scribed below.

Substituting Equation 12 into Equation 6 yields

F = KΦq. (17)

Pre- and post-multiplying this expression by ΦT and
Φ, respectively, gives

ΦTFΦ = ΦTKΦqΦ. (18)

The K-orthogonality condition in Equation 10 is used
to simplify Equation 18 to

ΦTFΦ = ΛqΦ, (19)

which reduces to

ΦTF = Λq. (20)

Rearranging this equation yields an expression for q
where

q = Λ−1ΦTF. (21)

Finally, substituting Equation 21 into Equation 12
gives

∆ = ΦΛ−1ΦTF. (22)

With this explicit relationship between ∆ and F, the
analytic expression for ∂∆/∂F is

∂∆
∂F

= ΦΛ−1ΦT, (23)

and the Local Sensitivity Matrix in Equation 5 can
be rewritten as

LSM =

 I −∂F
∂q

(ΦTΦ)−1ΦT

−ΦΛ−1ΦT I

 .
(24)

The remaining terms in the Global Sensitivity
Equation are ∂F/∂q in the LSM, along with ∂F/∂X
and ∂∆/∂X in the LSV. In this study, these terms
are evaluated using finite difference approximations.
However, clearly it is advisable to use analytic forms
of these partial derivatives if such information is avail-
able. Current CFD solvers such as CFL3D.ADII [18]
and SENSE [19], as well as CSM solvers including
MSC/NASTRAN [20] and GENESIS [4], can provide
some of the needed partial derivative terms.

4 Beam Example

A simple example problem is shown below to demon-
strate the GSE/modal analysis method. Consider a
cantilever beam of square cross section as shown in
Figure 2. The vertical force on the tip of the beam
acts in the positive z-direction with a magnitude that
depends on the amount of deflection. The magnitude
of the load, F , in units of pounds, is

F = 900 lb − (2000 lb/ft) δ. (25)

Using basic mechanics of materials, the vertical de-
flection at the tip of the beam is

δ =
FL3

3EI
, (26)

where the length of the beam, L, is 15 ft, Young’s
modulus, E, is 2.3 × 109 lb/ft2 (for titanium alloy
Ti-6Al-4V), and the area moment of inertia, I, is
0.00521 ft4 (h = w = 0.5 ft). The solution for F and
δ to this set of coupled equations is F = 757.725 lb
and δ = 0.071137 ft.

4.1 Exact Gradients

The total derivatives of F and δ with respect to an in-
dependent variable, e.g., beam length, may be found
analytically as

dF

dL
=
−1.2× 107EIL2

(3EI + 2000L3)2
≈ −23.9567 lb/ft, (27)
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and

dδ

dL
=

8100EIL2

(3EI + 2000L3)2
≈ 0.011978 lb/ft. (28)

The exact gradients also may be found using the GSE
formulation. The GSE for this coupled system is I −∂F

∂δ

− ∂δ
∂F

I




dF

dL
dδ

dL

 =


∂F

∂L
∂δ

∂L

 . (29)

Substitute the following partial derivatives into the
GSE

∂F

∂δ
= −2000, (30)

∂δ

∂F
=

L3

3EI
, (31)

∂F

∂L
= 0, (32)

and,
∂δ

∂L
=
FL2

EI
. (33)

Solving for the unknown Total Sensitivity Vector
terms gives

dF

dL
=
−6000FL2

3EI + 2000L3
≈ −23.9567 lb/ft, (34)

and,

dδ

dL
=

3FL2

3EI + 2000L3
≈ 0.011978 lb/ft, (35)

which, as expected, are identical to the total deriva-
tive values computed explicitly.

4.2 Approximate Gradients Using
GSE/Modal Analysis

Using the GSE/modal analysis approach described in
Section 3, a four node, three element finite element
model was created for the cantilever beam using the
commercial CSM code GENESIS [4]. In this model,
node points 1-4 are placed at 0.0, 5.0, 10.0 and 15.0
ft, respectively, with the applied load at node #4.
The first three natural frequencies and mode shapes
are listed in Table 1.

The partial derivatives in the GSE were calculated
using nodes 2-4, since these were free to deflect. Note
that the subscripts used below indicate node number.
The partial derivatives of force with respect to deflec-
tion are

∂Fi
∂δj

= 0, for i = 2, . . . , 4 and j = 2, 3 , (36)

and
∂F4

∂δ4
= −2000. (37)

The remaining partial derivatives in the GSE are

∂δ

∂F
= ΦΛ−1Φ, (38)

∂F2−4

∂L
= {0, 0, 0}, (39)

and,

∂δ2−4

∂L
= {0.00212893, 0.007618, 0.0143702}. (40)

Note that the term ∂δ/∂L was computed using a first-
order, forward-step, finite difference approximation
with a step size of 1.0% (∆L = 0.15).

Solving the GSE for the terms in the Total Sensi-
tivity Vector yields

dF4

dL
≈ −24.2028 lb/ft, (41)

and
dδ4
dL
≈ 0.012101 lb/ft, (42)

These estimates for the total derivatives dF/dL and
dδ/dL agree to within 3.0 percent of the exact values
for the total derivatives.

5 Aircraft Analysis Example

The GSE/modal analysis method is applied to an air-
craft analysis and design problem which involves com-
putationally expensive CFD and CSM codes. High
fidelity static aeroelastic analysis is performed for a
supersonic transport aircraft (see Figure 3) at Mach
2.4, 1.0g, cruise conditions, at an angle-of-attack, α,
of 3.5◦. The application of the GSE/modal analysis
methods enables the efficient evaluation of gradients
of the aerodynamic lift, drag, and pitching moment
coefficients (CL, CD, and CMo) with respect to any
of the design parameters. These gradients take into
account the aero-structural interaction in the aeroe-
lastic system.

5.1 Aircraft Parametric Model

A parametric wing/fuselage model of a supersonic
transport was developed for this study and is detailed
in Reference [21]. This model contains 64 parameters
which define the outer mold line (OML) of the wing
(i.e., planform and shape parameters). Six of the pa-
rameters which define the wing planform are shown
in Figure 4. Other parameters define the thickness,
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camber, and dihedral at various spanwise locations
on the wing.

In addition to the 64 OML parameters, there are
40 parameters that define the structural model, in-
cluding the thickness of the wing skin panels and the
sizes of various rib and spar structural elements.

5.2 Aircraft CFD Model

Surface and volume grids for CFD analysis are gen-
erated based on the OML parameters using the code
CSCMDO (Coordinate and Sensitivity Calculator for
Multi-disciplinary Design Optimization) [22]. The
output from CSCMDO is a structured grid with a
C-O discretization scheme and dimensions of 121 ×
41× 61, in the streamwise, circumferential, and sur-
face normal directions, respectively. The volume grid
is divided into two blocks with the interface splitting
the wing into upper and lower surfaces. There are
approximately 300,000 grid points in the model (see
Figure 5).

The CFD code CFL3D [3] was provided for this
study by the Aerodynamics and Acoustics Methods
Branch at NASA Langley Research Center. CFL3D
is a time-dependent, Reynolds-averaged, thin-layer
Navier-Stokes flow solver for use with two- or three-
dimensional structured grids. Both mesh sequencing
and multigrid techniques are available in CFL3D for
convergence acceleration. In this study, CFL3D is
used to resolve the inviscid, supersonic flow around
the aircraft configuration. Nominal cruise conditions
are Mach 2.4, 1.0g load factor, 3.5◦ angle-of-attack
(with respect to the fuselage centerline), and an al-
titude of 63,000 ft. An initial flow solution with
CFL3D starting from a uniform flow field requires
approximately 60 CPU minutes on an SGI work-
station with a 250 MHz, IP27 R10000 processor.
Subsequent analyses require approximately 30 CPU
minutes through the use of the restart capability in
CFL3D.

5.3 Aircraft CSM Model

A finite element model of the aircraft structure is
generated using the 64 OML parameters and the 40
structural parameters with the aid of software de-
veloped by Balabanov [23] for related research in-
volving supersonic transport configurations. The
wing/fuselage model of the aircraft is comprised of a
fixed number and topology of spar and rib elements,
along with wing skin elements (Figure 6). The layout
of the structural elements is based on the OML pa-
rameters, whereas the size (e.g., thickness and area)

of the finite elements is specified through the 40 struc-
tural parameters.

The finite element model of the supersonic trans-
port configuration has 226 nodes and 1130 elements
with a total of 1254 degrees-of-freedom. Note that
due to structural symmetry only the starboard por-
tion of the model is constructed. The FE model con-
tains triangular membrane elements for the fuselage
and wing skins, along with rod elements for the spar
cap and rib caps. The spar and rib webs are modeled
with a combination of shear panels and rod elements.
The material for all structural elements is titanium
alloy Ti-6Al-4V.

The CSM solver GENESIS [4] is used in this study
to perform linear structural analysis and modal anal-
ysis of the aircraft model. The computational ex-
pense for a single GENESIS analysis is approximately
one CPU minute on an SGI workstation.

5.4 Loads Transfer and Structural De-
formation

External aerodynamic loads for the GENESIS model
are obtained using the CFD-CSM loads transfer soft-
ware code FASIT (Fluids and Structures Interface
Toolkit) developed by Smith et al [24, 25], and cur-
rently maintained by the Air Force Research Labo-
ratory at Wright-Patterson Air Force Base. FASIT
provides a suite of interpolation schemes for trans-
ferring the aerodynamic loads from the CFD model
to the CSM model. The thin plate spline method of
Duchon [26] was used in this study, as recommended
in the FASIT User’s Manual [25]. The loads trans-
ferred from FASIT to the CSM surface grid are writ-
ten in the NASTRAN Bulk Data format. Since this
NASTRAN format is compatible with the GENESIS
input format, no translation was needed between FA-
SIT and GENESIS. The computational expense of
running FASIT is negligible (less than 10 CPU sec-
onds).

Displacement of the nodes in the CSM model and
the first 16 mode shapes are computed using GENE-
SIS. A series of Mathematica [27] programs are used
to calculate the mode shape scale factors (see Equa-
tion 13) needed to represent the node displacements
as a superposition of the 16 mode shapes. The ra-
tionale for choosing 16 mode shapes is described in
Section 5.6 below. Additional Mathematica programs
calculate the changes in the 64 OML parameters due
to structural deformation. A new CFD grid is then
generated from the updated list of 64 OML parame-
ters.

7
National Aeronautics and Space Administration



5.5 Aeroelastic Analysis

Aeroelastic analysis is performed by coupling the
CFD, CSM, and interpolation codes as depicted in
Figure 7. The box labeled “Geometry Manipulator”
in Figure 7 contains the software used to generate
the CFD and CSM parametric models, including the
various Mathematica programs described above. The
CFD, CSM, and interpolation software used in the
study is loosely coupled using UNIX shell scripts and
some simple file manipulation codes. More detail on
the software coupling methods is provided in Refer-
ence [21].

Due to the nonlinearity of the aero/structural in-
teraction, the aeroelastic analysis involves an itera-
tive procedure whereby the aerodynamic and struc-
tural analyses are performed repeatedly until both
the aerodynamic loads and the structural deflections
reach convergence. The convergence criterion used
in this loop is based on the z-direction displacement
of the leading edge of the wing tip. If the difference
in this z-displacement value between two successive
passes through the loop is less than 0.05 ft, then the
aeroelastic analysis is considered to be converged.

To reduce the oscillations that occur in this under-
damped system, a constant factor under-relaxation
method is used to accelerate convergence. This
under-relaxation scheme follows the approach of
Chipman et al [28] and Tzong et al [29]. A value of 0.7
for the relaxation parameter is used for all aeroelas-
tic calculations conducted in this study. The effect of
this damping parameter is shown in the convergence
history plot shown in Figure 8. This figure shows the
displacement history of the wing tip versus the num-
ber of passes through the aeroelastic loop in Figure 7.
Typically, convergence is obtained in 6-10 iterations
(2.7 CPU hours) when under-relaxation is used as
compared to 19 iterations (6.1 CPU hours) without
the relaxation method.

Results for an aeroelastic analysis at the nominal
Mach 2.4, 1.0g cruise conditions are shown in Fig-
ures 9 and 10. In Figure 9 the final deformed wing is
shown in comparison to the solid outline of the un-
deformed wing. Note that the z-axis in this figure
has been scaled to exaggerate the wing deflection for
easier viewing. Figure 10 shows the aeroelastic de-
formation of the aircraft wing at the wing tip, wing
break (y = 33.7 ft), and wing root. At the 1.0g
cruise conditions the z-direction (upward) wing tip
deflection is approximately 1.0 ft.

5.6 Mode Shape Selection Criteria

For this study 16 mode shapes were found to be
more than sufficient to represent the structural de-

formation of the aircraft finite element model. This
was demonstrated in a convergence study in which
the number of modes used in the aeroelastic analy-
sis procedure was varied from 1-16. Figure 11 shows
these results as compared to an aeroelastic analysis
performed using the exact structural deformations,
i.e., without introducing the superposition of mode
shapes. The correct final wing position was obtained
if at least four mode shapes were used in the linear
superposition. All of the aeroelastic analysis cases
shown in Figure 11 were started from the undeflected
aircraft shape with identical initial conditions.

6 Aircraft Sensitivity Analysis

Once a converged aeroelastic analysis was obtained
for the aircraft model, the GSE method was used to
estimate gradients of the coupled system with respect
to perturbations in the independent design parame-
ters. For this study, gradients of CL, CD, and CMo

were computed with respect to three different design
parameters: (1) X = α, i.e., the angle-of-attack at
cruise, (2) X = (t/c)break, the thickness-to-chord ra-
tio at the wing leading edge break location (see Figure
4), and (3) X = ΛLE, the inboard leading edge wing
sweep angle.

Calculating gradients for this coupled aero-
structural system involves computing the terms in
the Global Sensitivity Equation with the modifica-
tion to the Local Sensitivity Matrix shown in Equa-
tion 24. Solving the GSE yields the total derivatives
dF/dX and d∆/dX, which estimate the change in
the aerodynamic loads and structural deflections due
to a perturbation in the parameter X . These gra-
dient vectors are then used to compute the gradients
for CL, CD, and CMo . This is possible since the aero-
dynamic coefficients have a functional form identical
to that of the aerodynamic loads. That is,

CL = CL(X,∆), (43)

along with similar expressions for CD and CMo . Dif-
ferentiating Equation 43 with respect to the param-
eter X , yields

dCL
dX

=
∂CL
∂X

+
∂CL
∂∆

d∆
dX

. (44)

Following the approach shown in Equations 14-16
yields

dCL
dX

=
∂CL
∂X

+
∂CL
∂q

(ΦTΦ)−1ΦT d∆
dX

. (45)

Thus, the total derivatives for CL, CD, and CMo

can be computed using the total derivative d∆/dX
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obtained from the GSE. These total derivatives for
CL, CD, and CMo may then be used in Taylor Series
approximations of the form

CL(X + δX) ≈ CL(X) +
dCL
dX

δX. (46)

This Taylor Series approximation is an inexpensive
technique for estimating the changes in CL, CD, and
CMo due to small perturbations of X , in contrast to
an expensive aeroelastic analysis for X + δX .

6.1 Interdisciplinary Coupling Terms

Computing the interdisciplinary coupling terms in
Equation 24 involves the mode shape and eigenvalue
data from the finite element solver GENESIS. Some
of this data is listed in Table 2 which includes the first
16 natural frequencies and eigenvalues for the super-
sonic transport model, along with the mode shape
scale factors computed using Equation 13. Note that
this eigenvalue analysis data is obtained from the un-
deformed finite element model of the aircraft, i.e.,
without application of any loads. The matrix of mode
shapes, Φ, has 226 rows and 16 columns. That is,
each row corresponds to one of the nodes in the fi-
nite element model, and each column corresponds to
a different mode shape.

The partial derivative term ∂F/∂q in the Local
Sensitivity Matrix is calculated by perturbing each
mode shape coefficient by 20 percent, and then per-
forming a CFD analysis for each of the new aircraft
shapes. The 16 CFD analyses are performed using
coarse grained parallel computing on an SGI Origin
2000 computer. That is, the CFD analyses are ex-
ecuted simultaneously, with each CFD analysis as-
signed to a separate processor on the parallel com-
puter. The SGI Origin 2000 computers at NASA
Langley Research Center and NASA Ames Research
Center were used in this study. The performance of
this parallel computing approach is shown in Figure
12, where “speedup” is defined as the ratio of the
total serial computational time to the parallel execu-
tion time. The discrepancy between ideal and actual
speedup is due primarily to file transfer operations
between the processors and disk storage. With 16 si-
multaneous CFD analyses on the NASA Langley Ori-
gin 2000, an aggregate parallel performance of 380
MFLOPS was achieved. By using parallel comput-
ing, 16 CFD analyses can be completed in about the
same wall-clock time as is needed for a single CFD
analysis.

6.2 Local Sensitivity Terms

The partial derivative terms in the Local Sensitivity
Vector on the right side of Equation 5 must be com-
puted for each design parameter X , before solving
the GSE. Some CFD and CSM solvers may provide
these partial derivatives based on analytic differentia-
tion of the underlying CFD and CSM state equations.
If analytic expressions for the partial derivatives are
unavailable, finite difference approximations may be
used to estimate the partial derivatives. The finite
difference approach is used in this study.

6.3 Global Sensitivity Calculations

6.3.1 Angle-of-Attack Sensitivity

For the angle-of-attack sensitivity calculations the
partial derivative term ∂F/∂X = ∂F/∂α was com-
puted using finite differences. The aerodynamic loads
were obtained from the initial aeroelastic analysis re-
sults at α = 3.5◦, and from one additional CFD anal-
ysis at α = 4.0◦.

The nodal displacements from the CSM code are
not explicitly dependent on angle-of-attack. There-
fore,

∂∆
∂X

=
∂∆
∂α

= {0}. (47)

The GSE was then solved for the unknown to-
tal derivatives dF/dα and d∆/dα. Gradients for
CL, CD, and CMo were computed using Equation
45, with the terms ∂CL/∂q, ∂CD/∂q, and ∂CMo/∂q
computed using the results from the 16 CFD analy-
ses for the mode shape perturbations. The gradients
of the aerodynamic coefficients are listed in Table 3.
For comparison, the same gradients were computed
using finite differences, with an additional expensive
aeroelastic analysis at α = 4.0◦. Good agreement is
obtained between the GSE-based gradients and the
finite difference gradients.

Taylor Series approximations for CL, CD, and
CMo at α = 4.0◦ are listed in Table 4, along with
the exact values for CL, CD, and CMo computed in
the expensive aeroelastic analysis at α = 4.0◦. Good
agreement is obtained between the approximate and
exact values of the aerodynamic coefficients.

6.3.2 t/c Ratio Sensitivity

For the thickness-to-chord ratio sensitivity calcula-
tions the nominal value of the t/c ratio at the wing
break was 2.36 percent, and the perturbed value of
the t/c ratio was 2.60 percent. The partial deriva-
tive terms ∂F/∂(t/c) and ∂∆/∂(t/c) were computed
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using finite difference approximations. The aerody-
namic loads for t/c = 2.60 percent were obtained with
a single additional CFD analysis. Similarly, the struc-
tural deflections for t/c = 2.60 percent were obtained
from one additional CSM analysis.

Since the terms in the Local Sensitivity Matrix
do not change with respect to perturbations in the
design variables there was no need to recompute the
mode shape partial derivative term ∂F/∂q. Thus, the
previously computed LSM was reused when solving
the GSE for this t/c sensitivity analysis case.

The total derivatives dF/d(t/c) and d∆/d(t/c)
were computed by solving the GSE, and gradients
for the aerodynamic coefficients were estimated us-
ing Equation 45. These values are listed in Table 5
and show good agreement with gradients computed
using a finite difference approximation based on the
expensive aeroelastic analysis results.

Taylor Series approximations for CL, CD, and
CMo for a wing break t/c ratio of 2.60 percent are
listed in Table 6. These approximations are in good
agreement with aerodynamic coefficients obtained
from the expensive aeroelastic analysis with the wing
break t/c ratio of 2.60 percent.

6.3.3 Wing Sweep Angle Sensitivity

The sensitivity of the aerodynamic coefficients to per-
turbations in the inboard wing sweep angle were com-
puted using the GSE method. The nominal wing
sweep for the aircraft was 74.0◦, and a perturbation
of +2.0◦ was used in this study. A single CFD anal-
ysis for a wing sweep of 76.0◦ was used to create a
finite difference approximation for ∂F/∂ΛLE. Simi-
larly, the results from a single CSM analysis were used
to estimate ∂∆/∂ΛLE. As before, the LSM does not
change with respect to the aircraft design parameters
so it is reused in this sensitivity analysis.

After solving the GSE for the total sensitivity
terms dF/dΛLE and d∆/dΛLE, gradients of the aero-
dynamic coefficients were estimated using Equation
45. These gradients are listed in Table 7. Taylor Se-
ries approximations for CL, CD, and CMo for a sweep
angle of 76.0◦ are listed in Table 8. Both the gradi-
ents and the Taylor Series approximations obtained
from the GSE method are in good agreement with
values obtained from expensive aeroelastic analyses
for an aircraft with an inboard wing sweep angle of
76.0◦.

7 Computational Savings with
the GSE Approach

The advantage of computing gradients with the
GSE/modal analysis approach rather than a pure fi-
nite difference approach is illustrated in Figure 13.
This plot shows the number of CFD evaluations
needed to compute gradients of the coupled aero-
structural system, versus the number of independent
design parameters. Here, the number of CFD evalu-
ation is used as a cost metric since a CFD evaluation
is about 30 times more expensive than any other por-
tion of the aeroelastic analysis process.

In the pure finite difference approach, computing
the gradients for each new parameter requires about
10 CFD analyses. This cost stems from the need to
perform an aeroelastic analysis for each perturbation
of a design parameter. Thus, the cost of the pure fi-
nite difference approach is linear with respect to the
number of independent variables and is given by the
expression

COSTFD = 10nv, (48)

where nv is the number of independent variables.
In the GSE/modal analysis approach there is an

initial cost of 16 CFD evaluations, i.e., one CFD
evaluation for each mode shape coefficient pertur-
bation in the partial derivative term ∂F/∂q. How-
ever, after this initial cost only one new CFD evalu-
ation is needed for each design parameter. Thus, the
GSE/modal analysis approach quickly becomes more
attractive, from a computational standpoint, if gradi-
ents are needed for more than two design parameters.
The cost of the GSE/modal analysis approach is

COSTGSE/Modal = nv + 16. (49)

Note that the GSE approach without modal anal-
ysis would require a separate CFD evaluation for each
of the elements of the partial derivative term ∂F/∂∆.
With the models used in this aeroelastic analysis, the
cost of a GSE-alone approach would be

COSTGSE−alone = nv + 226, (50)

where 226 is the number of nodes in the finite ele-
ment model. For larger, more realistic finite element
models the value 226 would grow to be O(103−104).

In theory, the application of coarse grained par-
allel computing renders the wall-clock time identical
for both the GSE/modal analysis method and the
GSE-alone method. However, the burden of file man-
agement and serial file input/output make the GSE-
alone approach unattractive, even when a parallel
computer having hundreds or thousands of proces-
sors is available.
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Although not attempted in this study, the
GSE/modal analysis approach offers significant op-
portunities for multi-level parallelization. For exam-
ple, fine grained parallel computing could be used to
perform a CFD analysis on an aircraft model having
several million grid points. With such a large grid the
computational domain may be subdivided into hun-
dreds of zones, each of which is assigned to a separate
processor on a parallel computer. The coarse grained
GSE/modal analysis approach would then provide an
additional level of parallelism. As an illustration of
this multi-level paradigm, consider a large CFD grid
having 100 zones, each of which executes simultane-
ously on a separate processor of a parallel computer.
The GSE/modal analysis approach would replicate
this 100-zone grid 16 times, i.e., once for each per-
turbation of a mode shape coefficient. Such a strat-
egy would efficiently utilize 1600 processors. Further-
more, this multi-level strategy readily accommodates
increases in the number of zones (fine grained scal-
ability) and in the number of mode shapes (coarse
grained scalability).

8 Conclusions

A method based on the Global Sensitivity Equations
and modal analysis has been developed to calculate
gradients of aerodynamic force and moment coeffi-
cients for an aeroelastic aircraft model. The Global
Sensitivity Equations capture the the aero-structural
coupling in the supersonic transport aircraft model
examined in this study. Modal analysis is employed
to reduce the coupling bandwidth between the aero-
dynamic and structural models. Coarse grained par-
allel computing is used with the high fidelity com-
putational fluid dynamics solver, CFL3D, for the ef-
ficient calculation of partial derivative terms in the
GSE/modal analysis approach.

A sensitivity analysis was performed for the su-
personic transport aircraft model at nominal Mach
2.4 cruise conditions. The GSE/modal analysis ap-
proach was used to estimate the gradients of CL, CD
and CMo with respect to variations in three of the
aircraft design parameters. Good agreement was ob-
tained between the GSE-based gradients and finite
difference-based gradients of the aerodynamic coeffi-
cients. In addition, approximations for CL, CD and
CMo were computed with the GSE/modal analysis
approach for small perturbations in the three air-
craft design parameters. These GSE-based approx-
imations were in good agreement with exact values
for CL, CD and CMo computed using the high fidelity
aerodynamic and structural models.

A comparison of the computational expense for
the GSE/modal analysis method and for the brute-
force finite difference method demonstrated the ad-
vantage of using the GSE/modal analysis approach if
gradients are needed for more than two aircraft design
parameters. Thus, the initial cost of the GSE/modal
analysis approach is quickly recovered in a realistic
aircraft sensitivity analysis which may involve tens
or hundreds of independent parameters.
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Table 1: Natural frequencies, eigenvalues, and eigen-
vectors for the four node beam finite element model.

Mode 1 Mode 2 Mode 3
Frequency 5.86 Hz 36.77 Hz 103.69 Hz
Eigenvalue 1354.0 53388.0 424454.6

Eigenvector
Components

Node 1 0.0 0.0 0.0
Node 2 0.058156 -0.208162 0.262108
Node 3 0.192160 -0.149674 -0.230501
Node 4 0.351349 0.352866 0.351239

Table 2: Natural frequencies, eigenvalues, and scale
factors for the first 16 modes of the aircraft finite
element model.

Mode Frequency Eigenvalue Scale
(Hz) Factor

1 1.75 121.20 6.7740953
2 4.37 754.61 -1.9055302
3 7.05 1961.95 0.5120722
4 9.21 3350.76 0.0584607
5 10.94 4727.34 0.0303337
6 14.82 8675.36 -0.0675731
7 16.52 10768.64 -0.1006403
8 19.67 15277.35 0.0534937
9 24.42 23533.04 -0.0464125
10 25.33 25332.50 0.0233427
11 28.71 32539.54 -0.0528983
12 30.93 37765.35 -0.0113462
13 33.48 44241.15 0.0265745
14 34.47 46894.51 -0.0036646
15 37.59 55771.28 -0.0068915
16 41.37 67567.14 -0.0055217

Table 3: Gradients of CL, CD, and CMo due to per-
turbations in cruise angle-of-attack (X = α). The
finite difference values are computed from aeroelas-
tic analyses at α = 3.5◦ (nominal condition) and
α = 4.0◦. The gradients are in units of 1/deg.

GSE Finite Difference
dCL/dX 0.02432 0.02404
dCD/dX 0.002486 0.002408
dCMo/dX -0.02763 -0.02707

Table 4: Aerodynamic coefficients at an angle-of-
attack of 4.0◦. The Taylor Series approximations use
gradients from the GSE.

Taylor Series New Aeroelastic
with GSE Analysis

CL 0.090385 0.089027
CD 0.006231 0.006129
CMo -0.101000 -0.099099

Table 5: Gradients of CL, CD, and CMo due to per-
turbations in t/c ratio at the wing break. The finite
difference values are computed from aeroelastic anal-
yses at t/c = 2.36% (nominal value) and t/c = 2.60%.
The gradients are nondimensional.

GSE Finite Difference
dCL/dX 6.317× 10−4 9.958× 10−4

dCD/dX 3.835× 10−4 4.033× 10−4

dCMo/dX −0.929× 10−3 −1.446× 10−3

Table 6: Aerodynamic coefficients for a new t/c ratio
of 2.6 percent. The Taylor Series approximations use
gradients from the GSE.

Taylor Series New Aeroelastic
with GSE Analysis

CL 0.077207 0.077295
CD 0.005017 0.005022
CMo -0.085789 -0.085913
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Table 7: Gradients of CL, CD, and CMo due to per-
turbations in the leading edge sweep angle (X =
ΛLE). The finite difference values are computed from
aeroelastic analyses at ΛLE = 74.0◦ (nominal condi-
tion) and ΛLE = 76.0◦. The gradients are in units of
1/deg.

GSE Finite Difference
dCL/dX -0.003385 -0.004111
dCD/dX -0.000224 -0.000266
dCMo/dX 0.003359 0.004355

Table 8: Aerodynamic coefficients for a leading edge
wing sweep angle of 76.0◦. The Taylor Series approx-
imations use gradients from the GSE.

Taylor Series New Aeroelastic
with GSE Analysis

CL 0.070285 0.068835
CD 0.004478 0.004393
CMo -0.078848 -0.076857
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X

Output
F, ∆

CL, CD, CM
stress

Structural
Model

Aerodynamic
Model

Aerodynamic Loads
F

∆
Structural Deflections

Figure 1: Depiction of a coupled aero-structural sys-
tem.
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Figure 2: Sample problem of a cantilever beam sub-
ject to a tip load, where the load magnitude depends
on the tip displacement.

Figure 3: Supersonic transport aircraft.
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Figure 4: Planform variables for the aircraft wing.
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Figure 5: A view of one block in the aerodynamic
model of the supersonic transport. This grid shows
the starboard wing, the x−z plane of symmetry, and
the exit plane.

Figure 6: The structural model of the aircraft show-
ing the wing skin elements (port) and the rib/spar
elements (starboard).
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Figure 7: The arrangement of software used to per-
form static aeroelastic analysis.
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Figure 9: Orthographic view of the deformed wing
(mesh) and the undeformed wing (solid outline).
Note the X:Y:Z scaling of 1:1:2 used to show the wing
deformation.
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deformed (dashed) and final deformed (solid) wing
shapes.
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Figure 11: Convergence study showing the effect of
varying the number of mode shapes used to approxi-
mate the structural deformation of the aircraft finite
element model.
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Figure 12: Speedup obtained using coarse grained
parallel execution of CFL3D on the NASA Langley
SGI Origin 2000.
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